An a priori error estimate for a temporally discontinuous Galerkin space–time finite element method for linear elasto- and visco-dynamics
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations
Discontinuous Galerkin (DG) finite element methods were studied by many researchers for second-order elliptic partial differential equations, and a priori error estimates were established when the solution of the underlying problem is piecewise H3/2+ smooth with > 0. However, elliptic interface problems with intersecting interfaces do not possess such a smoothness. In this paper, we establish a...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملError Analysis of a Continuous-Discontinuous Galerkin Finite Element Method for Generalized 2D Vorticity Dynamics
A detailed a priori error estimate is provided for a continuous-discontinuous Galerkin finite element method for the generalized 2D vorticity dynamics equations which describe several types of geophysical flows, including the Euler equations. The algorithm consists of a continuous Galerkin finite element method for the stream function and a discontinous Galerkin finite element method for the (p...
متن کاملA Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods
In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...
متن کاملAn h-adaptive spacetime-discontinuous Galerkin method for linear elastodynamics
We present an h-adaptive version of the spacetime-discontinuous Galerkin (SDG) finite element method for linearized elastodynamics (Abedi et al., 2006). The adaptive version inherits key properties of the basic SDG formulation, including element-wise balance of linear and angular momentum, complexity that is linear in the number of elements and oscillationfree shock capturing. Unstructured spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2019
ISSN: 0045-7825
DOI: 10.1016/j.cma.2019.03.025